- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Apsokardu, Michael J. (1)
-
Johnston, Murray V. (1)
-
Krasnomowitz, Justin (1)
-
Lee, Shan-Hu (1)
-
Ouyang, Qi (1)
-
Stangl, Chris (1)
-
Tiszenkel, Lee (1)
-
Yu, Huan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. New particle formation (NPF) consists of two steps: nucleation andsubsequent growth. At present, chemical and physical mechanisms that governthese two processes are not well understood. Here, we report initial resultsobtained from the TANGENT (Tandem Aerosol Nucleation and Growth EnvironmentTube) experiments. The TANGENT apparatus enables us to study these twoprocesses independently. The present study focuses on the effects oftemperature on sulfuric acid nucleation and further growth. Our results showthat lower temperatures enhance both the nucleation and growth rate.However, under temperatures below 268 K the effects of temperature on thenucleation rate become less significant and the nucleation rate becomes lessdependent on relative humidity, indicating that particle formation in the conditions of ourflow tube takes place via barrierless nucleation at lower temperatures. Wealso examined the growth of newly formed particles under differingtemperature conditions for nucleation and further growth. Our results showthat newly nucleated clusters formed at low temperatures can indeed surviveevaporation and grow in a warmer environment in the presence of SO2 andozone and potentially other contaminant vapors. These results implythat some heterogeneous reactions involving nanoparticles affect nucleationand growth of newly formed particles.more » « less
An official website of the United States government
